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Abstract
In this project, I study the application of two techniques
to the belief-propagation based decoding of LDPC codes.
The first technique, min-sum decoding was implemented
in the 1980s by Tanner as a method to reduce computa-
tional complexity. The other technique, residual belief
propagation optimises the order in which message updates
are scheduled in an informed manner, leading to faster and
better convergence. The two methods are combined and
experimentally evaluated.

1 Introduction
Low density parity check (LDPC) codes were invented
by Gallager in the 1960s[8]. Impractical to implement
at the time, they were essentially forgotten for over three
decades until they were rediscovered in the 1990s[13, 14]
as a compelling alternative to Turbo codes as approaching
the Shannon limit. The development of the iterative be-
lief propagation algorithm led to decoding methods that
were linear in time to the block length of the code; and
since the 1990s, there has been a flurry of effort in the
design and analysis of LDPC codes (eg: [4, 5, 20, 6]).
These codes are one of the few for which an analytical
framework exists that fives guarantees on asymptotic per-
formance for large block lengths, as well as for evaluating
the performance compared to the Shannon capacity. As a
consequence, it is possible to design LDPC codes which
outperform turbo codes for large block lengths, and this
has led to the proliferation of LDPC codes into multiple
standards, such as DVB-S2[1] used in satellite television,
ITU-T G.hn[2] home network, and 802.11n WiFi[11].

This project tries to combine research in LDPC codes
with research in belief propagation. Specifically, it ex-
plores the effect of the min-sum decoding algorithm first
used by Tanner[18] and the residual based belief propa-
gation algorithm proposed by Elidan et al[7]. The min-
sum algorithm was proposed as a method to allow for

simpler decoding on embedded devices including digi-
tal signal processors (DSPs) and field programmable gate
arrays (FPGAs). The residual based approach works on
the premise that not all message updates are equally im-
portant, and tries to prioritise message updates to achieve
faster convergence, at the cost of adding some bookkeep-
ing overhead. This project aims to combine the two tech-
niques and compare performance, both in terms of decod-
ing performance, and time complexity.

This report is organised as follows: section 2 describes
some of the basic concepts in information and coding
theory, including some basics of linear block codes and
LDPC codes. Section 3 describes the decoding of LDPC
codes in detail, including the Tanner graph representation
of LDPC codes, and the iterative belief propagation algo-
rithm. Section 4 discusses the two techniques, namely the
min-sum decoding algorithm and the residual belief prop-
agation algorithm. Section 5 describes the experimental
setup used in this project. Section 6 discusses the results
obtained.

2 Information and Coding Theory
Basics

One of the most fundamental theorems in information the-
ory is the Shannon-Hartley theorem, which relates the in-
formation capacity of the network to the signal to noise
ratio. In the baseband domain, this theorem can be related
as [15]

I =
1
2

log2

(
1+

S
N

)
(1)

where I is the information that can be sent (in terms of bits
per symbol, with error correction) and S

N is the signal to
noise ratio (SNR) for the channel. A capacity approach-
ing code is one that reaches the Shannon limit, i.e. the er-
ror rate falls off dramatically on approaching the Shannon
SNR.
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An (n,k) block binary code is a mapping of k informa-
tion bits to an n bit long codeword. For the purposes of
this discussion, we shall denote the set of codewords by
C .1

A binary linear code satisfies the property that

{x1,x2} ∈ C ⇒ x1 +x2 ∈ C (2)

where addition is defined over the binary field so it corre-
sponds to the XOR operation.

Generator matrix A binary linear code C forms a k
dimensional subspace within an n dimensional space over
the binary field. We can decompose the subspace into k
basis vectors {v1,v2, . . . ,vk} so that

x = ∑
i

uivi (3)

where {u1,u2, . . . ,uk} are the coefficients of basis expan-
sion with respect to {vi}. Generally, {ui} is chosen to
represent the information bits.

This operation can be rewritten in matrix form as

x = uG (4)

where

G =


v1
v2
...

vk

 (5)

is called the generator matrix for the code C .

Dual code and parity check matrix Given that C is
a k dimensional subspace within an n dimensional space,
there will be an (n− k) dimensional subspace C⊥ which
will be orthogonal to every codeword in C . C⊥ can be
thought of as an (n,n−k) binary linear code, which is the
dual code for C . So, we have

x ∈ C ,y ∈ C⊥⇒ 〈x,y〉= 0 (6)

If H denotes the generator matrix for C⊥, i.e. the rows
of H form a basis for C⊥, we have

HxT = 0 (7)

Hence, each row of H forms a parity check equation for
the codeword x, which is why H is often referred to as the
parity check matrix for C .

It is interesting to note that neither the parity check ma-
trix nor the generator matrix are unique for a code C , as
any row operations on either matrix will not change the
subspace C or C⊥.

1A major part of this and the next section is covered in section 7.3 of
the book Fundamentals of Digital Communication[16].

Systematic codes A code is termed systematic if infor-
mation bits can be directly read from codeword bits. Con-
versely, if not all information bits can be read from code-
word bits, the code is termed non-systematic.

For a systematic binary linear code, the generator ma-
trix generally takes the form [12]

G =
[
Ik P

]
(8)

where Ik is a k×k identity matrix and P corresponds to the
set of equations representing the parity bits in the code-
word. This can be seen as

x = uG = u
[
Ik P

]
=
[
u uP

]
(9)

When the generator matrix is represented in such a sys-
tematic form, the parity check matrix can also be repre-
sented in a systematic form as

H =
[
PT In−k

]
(10)

so that
HGT = PT +PT = 0 (11)

A codeword x is decoded through the following algo-
rithm. First, a parity check is run. If the parity check is
satisfied (HxT = 0), then the information bits u are recov-
ered by a reverse lookup table mapping x ∈ C to u. If
the parity check is not satisfied, an error correction algo-
rithm is run until the parity check is satisfied, and then the
reverse lookup is executed.

It can be shown (though not in this report) that the per-
formance of a binary linear code C is determined by the
minimum Hamming distance between its codewords and
not by the form of the generator matrix. Hence, the per-
formance of the code C does not depend on whether the
code was systematic or not. As systematic codes are eas-
ier to decode (they do not involve a Θ(2k) search over the
set of codewords to find the information bits, rather the
information bits can be directly read from the codeword),
this project considers only the systematic form of the gen-
erator matrix and the parity check matrix.

Low density parity check codes are so called because
both the generator and parity check matrices for the codes
are sparse. However, this does not mean that any par-
ity check matrix for the given code C is sparse, rather it
means that the parity check matrix we use for decoding
is sparse. Other parity check matrices corresponding to
the code need not be sparse. (The sparseness of the par-
ity check matrix is an important factor in the iterative de-
coding algorithm discussed in the next section.) Gallger
showed[8] that the linear (Hamming) distance between
the codes typically increases linearly with block length,
which leads asymptotically to the Shannon capacity for
large block lengths.
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Figure 1: Tanner graph for Hamming code given in Equa-
tion 12

3 Decoding LDPC Codes
This section discusses the Tanner graph representation of
LDPC codes, code construction, and decoding using iter-
ative belief propagation.

3.1 Tanner Graph Representation
The Tanner graph is an important concept in decoding bi-
nary linear codes. Given a parity check matrix H, the Tan-
ner graph is a bipartite graph with variable nodes on the
left hand side, and parity check nodes on the right hand
side, one check node for each row of the parity check
matrix. Denoting the variable nodes by x j and the check
nodes by ci, x j is connected to ci if Hi j = 1.

Given the standard (7,4) Hamming code (single error
correcting, double error detecting), the parity check ma-
trix is given by

H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 (12)

the Tanner graph representing this code is given in Fig-
ure 1.

Regular LDPC codes Regular LDPC codes have ex-
actly dv ones in each column and dc ones in each row. So,
the Tanner graph for a regular LDPC code has exactly dv

edges emanating from each variable node, and dc edges
emanating from each check node. Gallager provided a
recipe for generating regular LDPC codes in his original
proposal[8], however this report shall not discuss the cre-
ation of regular LDPC codes.

Irregular LDPC codes Irregular LDPC codes do not
have any uniform structure. Both variable nodes and
check nodes can have a range of degrees. These codes
are generally represented by two polynomials

λ (x) = ∑
i

λixi−1 (13)

ρ(x) = ∑
i

ρixi−1 (14)

where

λi = P(edge is incident on variable node of degree i)

ρi = P(edge is incident on check node of degree i)

Construction of irregular LDPC codes given the poly-
nomials λ (x) and ρ(x) is done as follows: find the num-
ber of variable nodes of degree j as nλ j and the number
of check nodes of degree j as (n− k)ρ j, randomly dis-
tribute the variable and check nodes so that the degree
constraints are satisfied, then create a permutation Tanner
network connecting variable nodes to check nodes. Dis-
card obviously bad choices (such as those with redundant
parity checks), and choose the best performing code by
simulation.

This project does not follow all these steps to generate
LDPC codes given the limited time allowed for the project
and the extensive time taken for a simulation run. This
project employs a much less robust method to generate a
LDPC code (details are listed in section 5).

3.2 Iterative Decoding and Density Evolu-
tion

Gallager’s algorithm Gallager proposed a simple bit-
flipping algorithm that can be thought of as a precursor to
the more powerful belief propagation algorithm.

First, all check nodes pass messages to variable nodes
as

ri j = ∑
ĵ∈{Ci\ j}

x ĵ (15)

where Ci represents the set of all neighbours of check node
i

In the next step, variable nodes pass messages to check
nodes as

q ji =

{
x̄ j if ∑î∈{V j\i} δ (rî j, x̄ j)> T

x j otherwise
(16)
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where Vj represents the set of all neighbours of variable
node j, and T is a threshold decided based upon the prob-
ability of a bit being flipped in the binary symmetric chan-
nel.

The next step involves passing messages from check
nodes to variable nodes

ri j = ∑
ĵ∈{Ci\ j}

q ĵi (17)

Steps in equations 16 and 17 are repeated until all parity
checks are satisfied. Though a crude decoding algorithm,
the message passing steps are very similar to the modern
belief propagation algorithm discussed hereafter.

Belief propagation and soft decoding If we have ac-
cess to probabilistic estimates of demodulated bits, we
can improve the performance of the decoding algorithm.
This method is termed soft decoding. The belief propa-
gation based algorithm also operates on the Tanner graph
but works with log-likelihood ratios instead of hard de-
modulated bits.

Let xi be the noisy input received when bit b j is trans-
mitted. The log-likelihood ratio is defined as

LLR(x j) = log
l(x j|b j = 0)
l(x j|b j = 1)

= log
P(b j = 0|x j)

P(b j = 1|x j)
(18)

Here, we assume that 0 and 1 are equally likely a-priori.
If this were not true, then the entropy of the source would
not be 1, and Shannon’s limit would not hold.

The message received from the demodulator is the log-
likelihood ratio for each demodulated bit. Any mes-
sage on an edge incident on a variable node specifies
the log-likelihood ratio for that variable/bit. Denoting
the message received from the channel by c j, and the
same convention for messages as in Gallager’s algorithm
(equations 15 and 17), we have the following update at the
variable node

q ji = c j + ∑
î∈{V j\i}

rî j (19)

Which is to say that the likelihood ratio for a certain node
is the product of likelihood ratios given the evidence from
the channel and from the other check nodes.

The update at the check nodes is more complex. In
order to generalise the form of the update function, it is
more convenient to work in terms of P(b j = 0)−P(b j =
1).

Consider

m = log
P(b = 0)
P(b = 1)

(20)

We have

P(b = 0)−P(b = 1) =
em−1
em +1

= tanh
(m

2

)
(21)

Consider a single check node, with incoming messages
represented by mi. This node receives messages from all
variable nodes and must send a message to variable node
j with a log-likelihood ratio given evidence from other
variable nodes. As before, consider P(b j = 0)−P(b j =
1).

Consider

∏
i∈{N \ j}

tanh
(mi

2

)
= ∏

i∈{N \ j}
(P(bi = 0)−P(bi = 1))

(22)

= P

(
∑

i∈{N \ j}
bi = 0

)

−P

(
∑

i∈{N \ j}
bi = 1

)
(23)

= P(b j = 0)−P(b j = 1) (24)

So, we have

ri j = 2tanh−1

 ∏
ĵ∈{Ci\ j}

tanh
(q ĵi

2

) (25)

4 Improvements To The Decoding
Algorithm

This project experiments with two possible improvements
to the decoding algorithm.

Min-sum decoding Most applications employing
LDPC decoding require decoding to be done on a small
embedded device with limited resources, and where
power consumption may be an issue. Such devices may
not be able to support the complicated floating point
arithmetic required for computation of the hyperbolic
tangent or its inverse. As a result, some FPGAs use
lookup tables for computing the hyperbolic tangent[19].
However, a simpler approximation, often termed as
min-sum decoding works just as well. Tanner’s original
paper[18] implemented a version of min-sum decoding
instead of the more complex decoding scheme. Some
effort has since been put in finding LDPC codes that
perform well under min-sum decoding(eg: [4, 17]).
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Min-sum decoding essentially changes the update func-
tion in Equation 25 to the following

ri j = min
ĵ∈{Ci\ j}

∣∣∣q ĵi

∣∣∣ ∏
ĵ∈{Ci\ j}

sign
(

q ĵi

)
(26)

Residual belief propagation Elidan et al[7] introduced
residual message passing as a method to schedule mes-
sages in asynchronous belief propagation so that “a fixed
point is reached faster and more often.” The intuition be-
hind residual belief propagation is that messages which
have changed significantly in the past are more likely to
change in the future. The algorithm schedules messages
prioritising them by residuals, a measure of how much a
message has changed in the past.

One of the main issues with residual message passing
is that a single lucky update can push a message residual
down to zero, which can prevent the message from ever
being updated again. To counter this effect, residuals are
damped in practice, so that a single update does not pre-
vent an edge from being visited ever again.

Gonzalez et al[10] extended the residual based be-
lief propagation to an approach they termed “Residual
Splash”, with two major changes

1. Residuals are computed at nodes rather than at edges,
because small changes at multiple edges can result in
a big change for any outgoing message from a node.

2. Updates are performed not just on the node with the
largest residual, but on a neighbourhood around the
node, by constructing a breadth-first tree, and per-
forming message passing from leaves to root, and
from root to leaves. They provide a mathematical
model to choose the optimal depth of the tree.

This approach however requires a priority queue with ran-
dom deletions, in other words, since an update affects the
priority of a number of nodes, the nodes must be resorted
to maintain the priority order. The large number of calls to
resort the queue adds additional overhead to the algorithm
and makes it infeasible to implement.

Residual belief propagation for LDPC decoding has
been evaluated by Casado et al[3] and Gong et al[9].
However, these methods perform approximate node-wise
scheduling, whereas this project analyses the residual be-
lief propagation algorithm in its original flavour, perform-
ing edge-wise scheduling.

5 Experimental Setup
This project models a baseband communication system
over an additive white Gaussian noise (AWGN) channel,

Binary
source

LDPC
Encoder

16 QAM
Modulator

AWGN
Channel

16 QAM
Demodulator

LDPC
Decoder

Error 
statistics

Figure 2: Block diagram of the communication system
simulated in this project

simulated using MATLAB®. A block diagram for the sys-
tem is shown in Figure 2.

The signal to noise ratio (SNR) in the AWGN channel
is varied to ±5 dB around the Shannon SNR, and the per-
formance, in terms of bit error rate (BER), for the LDPC
code is recorded. The number of iterations required un-
til convergence is reached is also recorded for each block
that is decoded, and cumulative statistics are reported for
each SNR level.

LDPC code generation The LDPC code is generated in
a fashion unlike the one mentioned in section 3.1. As we
are concerned only with systematic codes (and the sub-
set where both the generator matrix and the parity check
matrix are in systematic form), a random sparse matrix P
is generated, and concatenated with the identity matrix to
generate the parity check matrix H =

[
P I

]
. The matrix

is checked to ensure that there is a one in every column, if
not, ones are added to the column where they are lacking.

This method is not as robust to generating good codes
as the method mentioned in section 3.1, however, for the
sake of this project, sub-optimal LDPC codes work better
at displaying the difference in decoding performance of
the different algorithms.

A 4×16 parity check matrix is generated, which corre-
sponds to a (16,12) binary linear code. The parity check
matrix generated for the purpose of this project is shown
in Figure 3. From the figure, it is apparent that the last
parity check checks just one bit, as a consequence forc-
ing that bit to be zero. This error was not spotted until it
was too late to change the parity check matrix and re-run
simulations.

Given the code rate (3/4) and the 16 QAM modula-
tion scheme used, the Shannon SNR is computed to be
∼ 18 dB.

A C++ class library is written for the LDPC decoder. A
MATLAB Executable (MEX) wrapper is written around
the C++ class, which interfaces with the simulation envi-
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Figure 3: A visualisation of the parity check matrix used
in this project

ronment via a MATLAB class. The decoder has two op-
tions, one to decide between sum-product and min-sum
decoding, and the other to decide between round-robin
and residual based decoding. A total of four runs (one
for each possible combination of options), each simulat-
ing 10,000,000 code blocks is executed at each SNR level.
MATLAB’s built-in decoder is used as a baseline. While
the baseline decoder is set to run for 50 iterations, the test
decoders iterate for 50 iterations, or until all parity checks
are satisfied, whichever deadline is reached sooner.

6 Results

The four different decoding schemes along with
MATLAB®’s built-in LDPC decoder are tested, and bit
error rates are reported in Figure 4. We observe that
the sum-product round-robin scheme does not perform as
well as the baseline, however, the trends are consistent. It
is possible that this discrepancy is due to a different order
in which nodes are processed by the baseline, or that the
baseline performed message passing for a whole 50 iter-
ations without terminating if parity checks were satisfied,
whereas the implementations in this report terminated as
soon as a parity check was satisfied. As the baseline is
closed-source, it is difficult to reach any conclusion.

We observe that for this LDPC code, the min-sum
schemes perform slightly better than the sum-product
schemes. The result is not surprising, it means that this
choice of code is better suited for min-sum decoding than
for sum-product decoding. Some effort has been focussed
on finding codes that are more amenable to min-sum de-
coding than sum-product decoding[17].

Another observation is that the residual based algo-
rithms perform better than their round-robin counterparts.
While this certainly aligns with the intuition behind the
residual algorithm, any confident report will require com-
parison over a number of codes. Such a comparison
will take additional time beyond the time allotted for this
project.

A comparison of the average number of iterations re-
quired for decoding is shown in Figure 5. The baseline
decoder was fixed to 50 iterations per block.

We observe that the min-sum residual based approach
takes less iterations than any other decoding scheme for
this code. The sum-product based approach is relatively
unaffected by the residual implementation. The min-sum
approach with the round robin scheme takes less iterations
to decode than the sum-product based approach for low
SNR, however, crossing the Shannon SNR (18 dB), the
min-sum approach with the round-robin ordering ends up
requiring more iterations than the sum-product decoders.

7 Discussion And Future Work
This project attempted to compare four decoding schemes
for LDPC codes, making use of two different optimisa-
tions, proposed by two different communities. The ap-
plication of residual belief propagation was found to re-
duce the computational complexity and provide better re-
sults satisfying the intuition behind the residual based ap-
proach. At the same time, the min-sum decoding scheme
offers a low-complexity alternative to the complicated
sum-product decoding scheme, and codes can be discov-
ered that perform better under min-sum decoding than
sum-product decoding.

Future work will involve implementing these decoding
schemes on field programmable gate arrays (FPGAs), and
evaluating performance for codes with long block lengths
as used in practice, like the codes used in the DVB-S2
standard with block lengths of 64,800[1].

Additional experiments are required to conclusively
compare the decoding performance of the residual based
approach as contrasted with a fixed-order approach
(round-robin).

At the moment, the parameters used in the residual
based approach for damping the changes in the resid-
ual values are chosen ad-hoc. Further work is needed to
choose the best value for the damping constant, as well
as for experimenting with different configurations of the
residual algorithm (eg: residuals by nodes, two different
sets of residuals for the two types of nodes, etc.).
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Figure 4: Bit error rates for different decoding schemes
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