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Abstract—Maximum a posteriori probability (MAP) inference
on Markov random fields (MRF) is the basis of many computer
vision applications. Sequential tree-reweighted belief propagation
(TRW-S) has been shown to provide very good inference quality
and strong convergence properties. However, software TRW-S
solvers are slow due to the algorithm’s high computational
requirements. A state-of-the-art FPGA implementation has been
developed recently, which delivers substantial speedup over soft-
ware.

In this paper, we improve upon the TRW-S algorithm by using
a multi-level hierarchical MRF formulation. We demonstrate the
benefits of Hierarchical-TRW-S over TRW-S, and incorporate the
proposed improvements on a Convey HC-1 CPU-FPGA hybrid
platform. Results using four Middlebury stereo vision bench-
marks show a 21% to 53% reduction in inference time compared
with the state-of-the-art TRW-S FPGA implementation. To the
best of our knowledge, this is the fastest hardware implementation
of TRW-S reported so far.

I. INTRODUCTION

Many applications in computer vision rely on maximum a
posteriori probability (MAP) inference computation on Markov
Random Fields (MRF). Among the available methods for MAP
inference, prior work [6, 13] has shown that the sequential tree-
reweighted belief propagation (TRW-S) algorithm can provide
good inference with reliable convergence properties.

However, software TRW-S implementations are typically
slow because the algorithm is computationally intensive and
challenging to parallelize due to its inherent sequential na-
ture. Choi and Rutenbar [2, 3] recently implement a hardware
TRW-S solver on a Convey HC-1 system. Their implemen-
tation achieves significantly faster inference compared to a
software implementation.

In this paper, we apply an algorithmic optimization to
TRW-S that speeds up its rate of convergence, resulting in
improved performance. Our technique is based on formulation
of the MRF graph as a multi-level hierarchy, along the lines
of hierarchical belief propagation proposed by Felzenszwalb
and Huttenlocher, [5] which helps reduce the amount of
computation involved while still providing good results. Our
work explores the applicability and effectiveness of the hi-
erarchical approach for TRW-S in the context of a hardware
implementation.

The contributions of this work are twofold. First, we
describe the application of a hierarchical approach to TRW-S
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and evaluate its benefits. To this end, we extend the hierarchical
approach described by Felzenszwalb and Huttenlocher [5] to
accommodate contrast-based spatially varying discontinuity
costs, which results in better accuracy. We study the effect
of tuning various parameters (block size, number of levels,
and iterations per level) for an implementation of our pro-
posed Hierarchical-TRW-S algorithm. Second, we implement
Hierarchical-TRW-S on a Convey HC-1 CPU-FPGA hybrid
platform. We experiment with and create efficient hardware to
manage the operations and amortize the overhead involved.

Experiments using four Middlebury stereo vision bench-
marks [12, 13] show that Hierarchical-TRW-S reduces infer-
ence time by 21% to 53% compared with Choi and Rutenbar’s
hardware TRW-S implementation. [2] To the best of our
knowledge, this is the fastest hardware implementation of
TRW-S reported so far.

This paper is organized as follows. In Section II, we define
the energy minimization problem used for inference, and intro-
duce notation that will be used throughout the paper. We also
discuss the hierarchical belief propagation algorithm proposed
by Felzenszwalb and Huttenlocher, [5] and the sequential tree-
reweighted belief propagation algorithm by Kolmogorov. [6] In
Section III, we describe algorithmically a Hierarchical-TRW-S
implementation. In Section IV, we explain our hardware
Hierarchical-TRW-S implementation. We discuss results from
running Hierarchical-TRW-S on a Convey HC-1 CPU-FPGA
hybrid platform in Section V. Finally, we discuss pertinent
related work in Section VI.

II. BACKGROUND

In this section, we describe the MRF energy minimization
problem, the tree-reweighted belief propagation algorithm, and
we introduce notation that will be used through the paper.

A. The MRF Energy Minimization Problem

Many problems in early vision and other applications can
be formulated as an energy minimization task over a graph.
Let G = (V, &) be a graph defined by vertices )V and edges £.
Further, let energy potentials be defined for vertices and edges,
p ¥V p € V (also referred to as data costs) and 6, ) V (p,q) €
£ (also referred to as discontinuity costs or smoothness costs).
The MRF energy minimization problem is the task of assigning
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labels from a label set £ to the vertices V in order to minimize
an energy function defined in the following manner:

E(l‘a) = z ep(lp) + Z a(p,q) (lp7 lq) + econst (1)

peV (p,q)€E

where 8 € R is the parameter/cost vector as a concatenation
of data costs, discontinuity costs, and O.on; Is € L is the label
assigned to s € V; and I € £V is a vector of labels assigned
to all vertices in V.

Loopy belief propagation (BP), along with methods like
graph-cuts and tree-reweighted belief propagation, have been
shown to provide good, approximate solutions to the energy
minimization problem on graphs with loops. [6,7, 15]

While BP based methods are popular because they adapt
easily to parallel execution, a major drawback is the large num-
ber of iterations required to reach convergence. Hierarchical
BP, proposed by Felzenszwalb and Huttenlocher, [5] enables
convergence to be reached in a small number of iterations
for grid graphs typically used in image processing tasks.
Hierarchical BP borrows from the concept of image pyramids,
grouping € X € nodes from a level into one node on the graph
at a higher level. This process is repeated to form additional
levels in the hierarchy, followed by belief propagation at the
highest level. Messages from higher levels are then copied to
lower levels to serve as a starting guess reasonably close to
convergence (as nearby pixels in an image are expected to be
strongly correlated). As a result, fewer iterations are needed
at any level. Additionally, the overhead due to the multi-level
nature of the graph is bounded. [5]

B. Tree-reweighted Belief Propagation

Tree-reweighted belief propagation (TRW) was introduced
by Wainwright et al. [14] for graphs with cycles. A sequential
version of this algorithm (TRW-S) was proposed by Kol-
mogorov. [6] Both methods work by decomposing a graph
with loops into a convex combination of trees, and performing
modified BP on the tree decomposition.

TRW-S has some advantages over BP: it provides a lower
bound for the energy function, which is guaranteed to be
non-decreasing; and a weak tree agreement (WTA) over the
tree decomposition guarantees a local optimum for the energy
function. A comparative study of energy minimization tech-
niques by Szeliski et al. [13] shows that the TRW-S algorithm
produces one of the best results for a stereo matching task.

Our work applies a hierarchical approach to TRW-S to
achieve faster convergence. Further, we generalize the hier-
archical approach to the case when discontinuity costs vary
by a contrast-based scaling factor over the grid graph, as is
common in early-vision tasks such as stereo matching.

III. HIERARCHICAL-TRW-S

In this section, we describe our proposed Hierarchical-
TRW-S algorithm, and select a set of parameters that provide
good convergence and are amenable to a hardware implemen-
tation.

A. Description of Our Algorithm

In order to adapt the hierarchical approach to the TRW-S
algorithm, we group € X € nodes at the lower level into a node
at the higher level. We add up data costs at the nodes on the
lower level to get the data cost for the corresponding node at
the higher level.

The Middlebury reference software [13] uses a contrast-
based scaling factor for discontinuity costs (referred to as gra-
dient cues) in order to improve the performance of the stereo
matching algorithm. These are multiplicative penalties w, o)
applied to the global finite-discontinuity cost function 6y, as
shown in Equation 2a, to obtain the local discontinuity cost
functions 9(p7q). Felzenszwalb and Huttenlocher [5] describe a
method to scale the finite-discontinuity cost function (between
levels L and L+1) as shown in Equation 2b. We modify this to
incorporate gradient cues as described in Equation 2c, where
Ny, ng refer to the nodes at the higher level in the hierarchy.
We can see that in the case when we don’t use gradient cues
(Wepg =1V (p,q) € &), our method degenerates to the one
proposed by Felzenszwalb and Huttenlocher.

Ol (Ips Lq) = Wiy, ) X 00 (L — L) (2a)
L+1 L lp - lq
00 (L, — L) = € X 00 ot (2b)
1
L+1 _ L
(”pv"q) - z X Z w(pﬂ) (20)

{(p,9)€E:pEny,q€ENy}

We perform TRW-S on the higher level, and then copy the
messages from the higher level down to the lower level. This
process could be repeated multiple times to create more levels
in the hierarchy.

We note that Kolmogorov’s work [6] does not depend on
the initial value of messages. As the hierarchical approach
merely sets the initial value of messages (to a guess reasonably
close to the converged values—see Section II-A), it does
not interfere with the convergence properties of the TRW-S
algorithm on the lowest level of the hierarchy, but it expedites
the TRW-S algorithm on the lowest level.

B. Parameter Exploration

We apply the hierarchical approach as described in Sec-
tion III-A to a series of Middlebury benchmarks. We run a
software implementation of the described Hierarchical-TRW-S
algorithm in order to explore the effects of various parameters
that can be funed in the hierarchical approach. We observe that
choosing a good set of parameters is critical to the success of a
hardware implementation of Hierarchical-TRW-S, as we must
carefully trade hierarchical overheads for convergence speed
and accuracy.

Two parameters that can be manipulated are the number of
levels in the hierarchy and the amount of computation done
at each level. It may be profitable to increase one or both,
if this means trading off the additional computation for faster
convergence. We varied the number of levels between two and
seven, and for each case, allowed the number of iterations
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Figure 1.  Convergence rates of a software Hierarchical-TRW-S implemen-

tation, compared with Baseline (flat) TRW-S, shown as energy-vs-message
update plots, for the Venus benchmark. We observe that extra computation
from adding levels to the hierarchy or performing additional iterations at higher
levels can offset benefits of the Hierarchical-TRW-S algorithm.
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Figure 2. Convergence rates for two Middlebury benchmark images using

gradient cues in Hierarchical-TRW-S compared with Baseline (flat) TRW-S.
Also shown the rate of convergence for the case with gradient cues quantized
to one bit (at most two values). The hierarchical approach uses two levels
(N = 2) and as many iterations on the higher level as on the lower level
(z = 1). Quantization of gradient cues does not significantly affect the rate
of convergence.

at each level to be one, two, or three times the number of
iterations on the immediately lower level. As a result, we end
up with 18 different configurations.

Figure 1 shows the convergence curves of the four corners
of such set of configurations for the Venus benchmark. [13]
Based on this plot and similar plots from other Middlebury
benchmarks, we see that energy is minimized with the least
amount of message updates when the same number of it-
erations are performed at each level. On the other hand,
adding levels to the hierarchy does not add any significant
performance gains, it may result in loss of performance due
to overheads not captured through the metric of number of
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Figure 3.  Effect of block size used in forming the hierarchy on the

convergence of the Hierarchical-TRW-S algorithm for the ConesF (cropped)
benchmark. Increasing the block size results in slower convergence, sometimes
slower than the Baseline (flat).

message update operations performed, like constructing the
hierarchy and copying messages between levels. Consequently,
we set the number of levels at two and perform the same
number of iterations at each level, as this configuration results
in the least amount of computational overhead. Figure 2
shows convergence results for two additional benchmarks from
the Middlebury suite that use gradient cues for better stereo
estimation.

The Middlebury reference software [13] uses at most two
values for gradient cues, however, our method of scaling
gradient cues in Equation 2c will create additional values. In
order to simplify our implementation, we quantize the averaged
gradient cue to be one of the two allowed values for the
original problem. Figure 2 shows that this does not adversely
affect convergence.

Felzenszwalb and Huttenlocher [5] make a general case for
€ X € blocks, but restrict their experiments to use 2 x 2 blocks,
which works well in practice. Larger block sizes may be more
profitable for images where the feature size is fairly large. We
experimented with varying block sizes for various benchmarks.
Convergence results for ConesF (cropped) (an image from the
Middlebury suite [12] cropped to 1800 x 1000 pixels in size,
with 64 disparity levels), for blocks of sizes 2 x 2, 4 x 4, and
8 x 8, are plotted in Figure 3, which shows that larger block
sizes lead to a slower rate of convergence.

This surprising result may be attributed to the fact that the
probability of object boundaries in the image passing through
(as opposed to being aligned at the edges of) larger blocks
is more than smaller blocks. As a result, the hierarchical
algorithm will produce messages that do not capture such
object boundaries well enough, and produce a poor starting
guess for the lower layer.

In order to study this effect of edge alignment, we created
two pairs of synthetic stereo benchmarks with a square fore-
ground, aligned with an 8 x 8 and a 2 x 2 block boundary for
one pair, and not aligned with these boundaries for the other
pair. Figure 4 shows the difference (L1 norm) between the
messages from the last iterations at the higher and lower levels
as a heat map. Black indicates no or very little difference; white
indicates a significant difference in message values. These
results confirm our suspicions: if all object boundaries are
aligned with the blocks used to create levels in the hierarchy,
both larger and smaller block sizes lead to a good initial value
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for the lower level, and Hierarchical-TRW-S performs well. On
the other hand, if object boundaries are not aligned with blocks
used, both small and large blocks perform equally poorly. In
a real image, smaller block sizes will result in much faster
convergence than larger block sizes, because they are more
likely to be aligned with object boundaries.

As a result, we fix the block size to be 2 x 2 for the rest
of this work. Exploring larger block sizes for Hierarchical-
TRW-S with more sophisticated handling of gradient cues is
the subject of future work.

IV. HARDWARE IMPLEMENTATION OF
HIERARCHICAL-TRW-S

In this section, we describe our hardware implementation
of Hierarchical-TRW-S using a hybrid-core computing system,
using an optimal set of parameters obtained in Section III.
To implement the proposed Hierarchical-TRW-S, we need to
consider not only TRW-S inference for different hierarchical
levels, but also data management across the levels to construct
additional MRFs for higher levels and copy messages back to
lower levels. Our implementation platform, Convey HC-1, [4]
is equipped with an Intel Xeon dual-core processor and four
Xilinx Virtex-5 (V5LX330) FPGAs which are tightly coupled
via a cache-coherent virtual memory. We build Hierarchical-
TRW-S on top of Choi and Rutenbar’s single-level design—
Streaming TRW-S (STRM-TRW-S), [2] and explore options
to orchestrate data management and inference for best perfor-
mance.

A. Hierarchical-TRW-S Implementation

To implement Hierarchical-TRW-S, we leverage the
STRM-TRW-S architecture. Implementing Hierarchical-
TRW-S essentially consists of adding two new operations:

1)  Construct: Constructs the higher level of the hier-
archy by adding data costs and averaging gradient
cues.

2)  Copy: Consists of copying messages from the upper
levels to the lower levels in the hierarchy.

We discuss two possible approaches to implementing the
Hierarchical-TRW-S modifications:

1)  Naive approach: We can employ a Naive approach
and use STRM-TRW-S to run the inference algorithm
on FPGA, and let the CPU handle the Hierarchical-
TRW-S modifications, namely the Construct and
Copy tasks. In addition to reading stereo images and
writing a disparity map, the CPU will construct a
new MRF for the higher-level inference, then call
STRM-TRW-S to run inference in FPGA, and finally
copy computed message values to be used in the next
hierarchy. However, as we can see from Table II,
the CPU operations for Construct and Copy incur
significant overhead in total execution time.

2)  Optimized approach: We move the Construct and
Copy operations required for Hierarchical-TRW-S
to dedicated FPGA modules. In this approach, the
CPU is responsible only for handling inputs and
outputs and for coordinating the different phases
of the Hierarchical-TRW-S algorithm between the

Table I. DEVICE UTILIZATION SUMMARY FOR OPTIMIZED
HIERARCHICAL-TRW-S ON XILINX VIRTEX-5 (V5LX330) FPGA

Resources STRM- Construct  Copy  Convey Total
TRW-S infras-
tructure

(S;‘;’ Registers 25,745 920 1,027 53,531 81,223
Slice LUTs 24,967 1,362 698 58916 86,125
(6 input)

Block RAM

(36 Kbit) 132 8 2 75 237

FPGA units. This minimizes Hierarchical-TRW-S’
overheads, as shown in Table II.

B. Architecture Details for Optimized Approach

The overall architecture for Optimized Hierarchical-TRW-S
is shown in Figure 5. A modification on the STRM-TRW-S ar-
chitecture of Choi and Rutenbar, [2, 3] Optimized Hierarchical-
TRW-S shares the memory interface between STRM-TRW-S,
Construct, and Copy. Data costs for each node (16 bits per
label) in the MRF and its horizontal and vertical messages
(24 bits per message per label, i.e., 48 bits per label) are packed
together. The 1 kbit-per-cycle external memory bandwidth can
transfer data cost (via memory ports 0-3) and messages (via
memory ports 4-15) for up to 16 labels in each clock cycle.
If the number of labels is larger than 16, it will take multiple
cycles to fetch data for the entire data set. STRM-TRW-S,
Construct, and Copy employ a folded pipeline architecture [9]
with a variable folding factor of up to four to efficiently fetch
and process data. Table I shows the device utilization summary
of the FPGA modules.

Streaming TRW-S Module: As explained in Section II-B,
to guarantee the convergence of TRW-S, messages need
to be updated in a sequential manner. Choi and Rutenbar
showed that a diagonal order of message updates preserves
the sequential dependencies while providing opportunities for
parallelism. [2] Their STRM-TRW-S architecture exploits this
parallelism within the diagonal nodes to maximize throughput.
STRM-TRW-S consists of the message-passing unit and a
FIFO interface. A stream of node data (stored in the diagonal
order) is fetched from the external memory to STRM-TRW-S
via the FIFO interface, and then processed in parallel through
multiple pipeline stages of the message-passing unit. Memory
access by the FIFO interface and computation by the message-
passing unit are done in parallel to exploit as much memory
bandwidth as possible.

Construct and Copy for Streaming TRW-S: The Con-
struct and Copy operations necessary for Hierarchical-TRW-S
deal with data transfer between hierarchical levels—Construct
transfers data from the lower level to the higher level, and Copy
performs the inverse. Therefore, to design dedicated modules
for the Optimized approach, we need to consider the data
layout between levels.

As discussed previously, STRM-TRW-S requires data to
be stored in a diagonal fashion. However, Construct and
Copy need to access the data as square 2 x 2 blocks, i.e.
from multiple diagonals. This means that given a diagonal
order for data storage on any level, Construct and Copy must
necessarily access data in a irregular and non-sequential order
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(a) Aligned, Block size = 2 x 2 (b) Aligned, Block size = 8 X 8

Figure 4.

(c) Not aligned, Block size =2x 2 (d) Not aligned, Block size = 8x 8

Heat maps show the L1 norm between messages (black indicates very small or no difference while white indicates a large difference) at the 9™

iteration on the lower level and the 10™ iteration on the higher level when the foreground object is aligned (Figure 4a and Figure 4b) and not aligned (Figure 4c
and Figure 4d) with the blocks used to create the hierarchy. When the foreground object is aligned, both small and large block sizes result in messages fairly
close to their respective final values on the lower level. On the other hand, when the foreground is not aligned, both larger and smaller block sizes result in

poor starting guesses for the TRW-S algorithm on the lower level.

CPU

FSB ﬁ

STRM-TRW-S

8 Mess.age —
= Passing

0-3

| Construct __|4—
4-15

am e

0-3

5
Memory Interface

Data Costs

Load
T
o

Messages :Ir
(horizontal/vertical)

Store
Control

FPGA
Figure 5. Overall architecture of Optimized Hierarchical-TRW-S

(9]

gl= LD Idx

RRe

2R

5

-

g|g

£l

< |2

Figure 6. Architecture for Construct and Copy units

to transfer data between levels. This, however, causes little
performance degradation thanks to Convey’s scatter-gather
DIMMs (SG-DIMMs), [1] which provide 8-byte accesses to
physical memory, thereby reducing the inefficiencies involved
in non-sequential memory accesses on a conventional system.
As our message data is packed in multiples of 8 bytes, the
SG-DIMMs can be exploited to achieve near-peak bandwidth
for irregular memory accesses. As an example, experiments on
the Copy operation for the Tsukuba benchmark show memory
bandwidth utilization at 92.1% of the allotted capacity (see
Table V).

Figure 6 shows a streaming architecture used for Construct
and Copy. Both consist of index control logic, a FIFO, and
functional logic. The index control logic computes proper
indices for transferring data between a diagonal in the higher
level and the corresponding multi-diagonals in the lower level.
To this end, the load index control of Construct and the
store index control of Copy include a logic block for index
increment with varying strides. On the other hand, the store
index control of Construct and the load index control of

Table II. COMPARISON OF TIMES SPENT ON VARIOUS TASKS FOR
BASELINE (FLAT) TRW-S AND HIERARCHICAL-TRW-S (N =2,z = 1)
ALGORITHMS FOR THE TSUKUBA IMAGE PAIR BENCHMARK. TIMES
REPORTED ARE FOR 29 ITERATIONS FOR BASELINE TRW-S AND 12 FOR
HIERARCHICAL-TRW-S, AS THEY RESULT IN NEARLY IDENTICAL
ENERGY VALUES (AROUND 100.5% OF THE LOWER BOUND).
STRM-TRW-S TIMES FOR HIERARCHICAL-TRW-S INCLUDE TIME SPENT
IN BOTH LEVELS OF THE HIERARCHY.

Time Required (s)

Task . .
Te1s Hierarchical-TRW-S
Naive Optimized
Construct N/A 0.015 0.001
Copy N/A 0.027 0.001
STRM-TRW-S 0.093 0.048 0.048
Total 0.093 0.090 0.050
Table III. A COMPARISON BETWEEN BASELINE TRW-S AND

HIERARCHICAL-TRW-S (N = 2, z = 1) FOR THE MIDDLEBURY STEREO
BENCHMARK IMAGES. THE TIMES REPORTED DISCOUNT THE
INITIALIZATION TIME, AS IT IS NOT PART OF THE MRF INFERENCE
PROBLEM. THE TIMES REPORTED FOR BASELINE INCLUDE THE TIME
SPENT IN STRM-TRW-S, WHILE TIMES REPORTED FOR
HIERARCHICAL-TRW-S INCLUDE THE TIMES SPENT IN STRM-TRW-S
FOR BOTH LEVELS, ALONG WITH TIMES REQUIRED FOR CONSTRUCT AND
COPY OPERATIONS.

Benchmark Convergence Runtime (s)
Baseline Hierarchical
Quick 0233 0.159 (-32%)
Teddy Better 1436 1.135 (-21%)
Quick 0022 0.014 (-38%)
Tsukuba Better 0.093  0.050 (-46%)
Vens Quick 0.115  0.069 (-40%)
Better 0336 0.199 (-41%)
, Quick 2529 1313 (-48%)
ConesF (Cropped)  piier 11.080  5.185 (-53%)

Copy need only one simple counter for memory indexing.
The functional logic for Construct consists of arithmetic units
for accumulation of data cost and averaging of gradient cues,
whereas the function logic for Copy is simply a buffer for
copying the same messages four times. From Table I, we see
that the hardware overheads for Construct and Copy are small.

V. EXPERIMENTAL RESULTS

This section discusses the experimental results obtained on
our Convey CPU-FPGA hybrid platform.
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Figure 7. A comparison of resulting disparity maps for Baseline TRW-S
and Hierarchical-TRW-S for the case when quick, approximate inference is
needed, and for the case when energy is allowed to reach sufficiently close to
the bound.

Table II lists the time required for various tasks in
both Baseline (flat) TRW-S and Hierarchical-TRW-S for the
Tsukuba benchmark. Because Hierarchical-TRW-S requires
fewer iterations to achieve the same energy value as Baseline
TRW-S, the time spent in the STRM-TRW-S hardware on
the FPGA is significantly reduced, from 93 ms to 48 ms.
Naive, which leaves the preparation and copy tasks to the CPU,
achieves only a modest improvement over Baseline, due to
overheads associated with performing the Construct and Copy
tasks on the CPU. Optimized, in which we moved Construct
and Copy tasks to FPGA, performs better. For the purpose of
reporting relative improvements in performance, we discount
the initialization time because it is the time required to compute
the inputs to the MRF inference problem and is not a part of
the MRF inference task.

Table III lists times required by Baseline TRW-S and
Hierarchical-TRW-S for the Middlebury benchmarks to reach
a certain level of convergence. There are two sets of results
mentioned for each benchmark. The first one is for the case
when a quick, rough estimate is sufficient. In this case, we
perform approximately 10 (Baseline) iterations on the MRF.
The second set is for when we want better inference and
allow the energy to reach sufficiently close to the bound.
(Figure 7 shows the resulting disparity map using the Tsukuba
benchmark for the two cases, for both Baseline TRW-S and
Hierarchical-TRW-S.) The hierarchical approach speeds up the
rate of convergence, but has its own overheads (Construct
and Copy). In the first case (quick, rough estimate), the
overheads may not be as easily amortized due to the relatively
short inference time. As we get closer to convergence, the
overheads are amortized, but the hierarchical algorithm pro-
vides diminishing returns. Thanks to Optimized, the overheads
(Construct and Copy) are rendered extremely small to cause
any deterioration in the performance of Hierarchical-TRW-S
(e.g.: 0.002 s overhead vs 0.048 s inference for the Tsukuba
benchmark, better inference, see Table II). From Table III, we

note that Optimized Hierarchical-TRW-S offers a 21% to 53%
reduction in inference time compared with Baseline.

VI. RELATED WORK

A significant amount of related work deals with stereo
matching either on FPGAs, GPUs, or VLSI circuits. In this
section, we restrict our study to related work involving MAP
inference on MRFs. It is difficult to make an exact comparison
with related work due to the plethora of algorithms and bench-
marks used. In this section, we report relevant performance
numbers, and make a best estimate of performance normalized
to the benchmarks used in this paper when the two sets are
not the same. Because this section can necessarily discuss only
a limited number of prior work, we discuss only the most
relevant related work.

A. Comparison against Patra

Recently Zhao et al have proposed Patra, [18] which is an
FPGA implementation of the TRW algorithm by Wainwright
et al. [14] Our Hierarchical-TRW-S implementation is superior
than Patra in two ways: convergence speed in time and
platform resource utilization.

Convergence speed in time: In order to compare our imple-
mentation against Patra, we modify the Middlebury reference
software [13] to implement Patra, and use it to obtain energy-
iteration plots. We ensure that our software implementation
matches the final (converged) energy values reported in the Pa-
tra paper exactly. Next, we use the per-iteration times reported
in the Patra paper to compute the energy-time plots. Note
that Patra does not support gradient cues or L2 smoothness
costs. As a result, we disable these features in Optimized
Hierarchical-TRW-S as well, and obtain energy-iteration and
energy-time curves in order to make a fair comparison against
Patra. As a result, the convergence curves for our figures in
this section may appear different from those in the rest of this
paper.

As Patra is based on TRW and not on TRW-S, it cannot
provide any of the guarantees on convergence that come
with TRW-S. While Patra may run each iteration faster than
our streaming algorithm, Patra converges at a much slower
rate. As we can see in Figure 8a, Patra takes many more
iterations to reach the same energy levels as Baseline TRW-S
or Hierarchical-TRW-S. Even when we factor in the lower time
per iteration for Patra, we see that our Hierarchical-TRW-S
algorithm outperforms Patra, as can be seen in Figure 8b. This
is true for the other benchmarks as well.

Device and memory bandwidth utilization: Patra is im-
plemented on a CPU-FPGA hybrid platform, equipped with
one Xilinx Virtex-6 FPGA and 38 Gigabyte/sec of memory
bandwidth. Similarly, we use one Xilinx Virtex-5 FPGA
available in Convey HC-1 with 19.2 Gigabyte/sec of memory
bandwidth. Efficient hardware implementations should provide
good performance while utilizing as little area and memory
bandwidth resources; our Hierarchical-TRW-S implementation
outperforms Patra on both fronts. The numbers are reported in
Table IV and Table V. As our architecture is optimized for
multiples of 16 labels, Venus and Teddy aren’t able to use all
available bandwidth, as they use 20 and 60 labels respectively.
Nevertheless, our system provides better convergence while
using less FPGA resources and less bandwidth.
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Figure 8. Comparison of convergence rates for Hierarchical-TRW-S, Baseline
TRW-S, and Patra for the Tsukuba benchmark.

Table IV. COMPARISON OF FPGA RESOURCE UTILIZATION BETWEEN
PATRA [18] AND OPTIMIZED HIERARCHICAL-TRW-S (OUR SYSTEM).
NUMBERS LIST TOTAL DEVICES USED ON THE FPGA.

System FPGA LUT FF BRAM
Patra Virtex-6 (SX475T) 73,217 110,700 380
Hierarchical- TRW-S  Virtex-5 (V5LX330) 86,125 81,223 237

B. Comparison against other related work

Our Baseline (flat) TRW-S implementation is exactly the
same as Choi and Rutenbar’s work. [2,3] This has been
discussed in Section IV-B. Most other related work uses belief
propagation (BP) and its hierarchical variant, e.g.: tile-based
BP on a VLSI chip and on a GPU by Liang et al., [8] on a
GPU and on FPGAs by Park et al., [10, 11] real-time BP on the
GPU by Yang et al., [17] fast-BP by Xiang et al. [16] Choi and
Rutenbar [2] extensively compare some of these works with
Baseline (flat) TRW-S implementation.

In particular, Liang et al. [8] use a tile-based BP algo-
rithm on a UMC 90 nm technology, which processes QVGA
(320 x 240) images with 64 labels at 14 frames per second.
We estimate that for the same set of input images, our hardware
will operate over 17 frames per second. We can, however,

Table V. COMPARISON OF MEMORY BANDWIDTH UTILIZATION
BETWEEN PATRA [18] AND OPTIMIZED HIERARCHICAL-TRW-S (OUR
SYSTEM). NUMBERS ARE REPORTED AS ABSOLUTE BANDWIDTH IN
GIGABYTES PER SECOND.

System Tsukuba Venus Teddy
384x288x16L  434x383x20L  450x375x60L
Patra 26.63 GB/s 12.50 GB/s 19.41 GB/s
Hierarchical-
TRW-S 17.69 GB/s 11.08 GB/s 16.70 GB/s

make a direct comparison with their GPU implementation
on a 8800 GTS GPU, which requires a reported 124 ms on
the Tsukuba benchmark, compared to 14 ms required by our
hardware Hierarchical-TRW-S solver.

Park et al. [10, 11] have developed a QVGA stereo match-
ing algorithm using Fast BP on two Xilinx Virtex II FP-
GAs [11] and on a 0.18 yum CMOS process. [10] Their
implementations achieve 30 frames per second at QVGA size
(320 x 240) images with 32 disparity levels. We estimate that
our system can operate at faster than 35 frames per second.

Similarly, Yang et al. [17] with their real-time BP algorithm
can achieve up to 16 frames per second for Tsukuba on a 7900
GTX GPU. Xiang et al. [16] can process Tsukuba in 61 ms
on a Geforce GTX 260 GPU, compared with 14 ms for our
implementation.

VII. SUMMARY

In this paper, we proposed a hierarchical modification to
the TRW-S algorithm. We have tested this modification in
software and on a Convey HC-1 CPU-FPGA hybrid platform.
Our experiments show a definite improvement in both software
and hardware implementations. Specifically, we get a 21%
to 53% reduction in computation time on our CPU-FPGA
hardware implementation for four Middlebury stereo-image
benchmarks. At the same time, we’ve observed that using
larger blocks to create the hierarchy worsens convergence.
Further investigation into a method to speed up convergence
using larger blocks will be the subject of future work.
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